
Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 8: Extending LibreOffice

Chapter 46. Add-ons

Add-ons build upon the UNO component techniques

described in the last chapter to make a component

accessible via an Office menu and/or toolbar item.

I'll implement the EzHighlight add-on, which allows word

occurrences to be highlighted in a Writer document.

EzHighlight is installed in Office as an extension in the

same way as an UNO component, and is listed by the

Extension Manger in Figure 1.

Figure 1. The EzHighlight Add-on Extension.

When the Writer application is running, EzHighlight is accessible either through

Office's Tools > Add-Ons menu item (see Figure 2) or as a toolbar created by View >

Toolbars > Add-on 2 (see Figure 3). This 'floating' toolbar can be attached to an

existing toolbar.

Topics:What is an Add-

on?; Creating the

EzHighlight Add-on;

Creating a Partial Add-

on Implementation; The

FreeMarker-generated

EzHighlightAddonImpl;

Creating the Dialog;

Configuring the Add-on;

Building and Installing

the OXT File

Example folders:

"AddOn Tests", "Utils"

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

Figure 2. The EzHighlight Add-on on the Tools Menu.

Figure 3. The EzHighlighter Add-on as a Toolbar.

When the user clicks on "EzHighlight Text", either through the menu or toolbar, the

dialog shown in Figure 4 appears.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

Figure 4. The EzHighlighter Dialog.

The user enters a word, and either types <ENTER> or presses the "Highlight" button.

Every matching word in the currently loaded Writer document is redrawn in red, and

the number of changes reported in the "Count:" field.

EzHighlight also has basic help support, accessible from Office's Help menu as the

"About EzHighlight" item (see Figure 5).

Figure 5. The EzHighlight Help Menu Item.

Clicking on the help item causes a simple message box to appear, as in Figure 6.

Figure 6. The EzHighlight Help Message Box.

1. What is an Add-on?

Office supports two kinds of add-on: job add-ons and ProtocolHandler add-ons.

A job add-on is a component triggered by events inside Office, such as when the

application is first opened or about to terminate, or when a document is loaded,

printed, or closed.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

This chapter is about Protocol handler add-ons, which link menu and/or toolbar items

to a component using Office's dispatch framework. Every GUI element is assigned a

'command URL', a unique name made of two or three parts:

<protocol string>:<command string>[?<command string argument>+]

A protocol string can be almost anything, and I'll be using the extension's ID

("org.openoffice.ezhighlightAddon").

There is a different command string for each GUI-triggered action, and I'll utilize two:

"EzHighlight" and "help". "EzHighlight" is associated with the EzHighlight menu and

toolbar items (Figures 2 and 3), and makes the dialog in Figure 4 appear. "help" is

assigned to the "About EzHighlight" help menu item, and causes the message box in

Figure 6 to be displayed.

I won't be using command string arguments.

When a user chooses an item in the user interface, its command URL is passed along

a list of dispatch handlers until one accepts the command and processes it by creating

a dispatch object. Fortunately, most of the dispatch handling behavior in an add-on

can be generated automatically.

The main source of information for job and ProtocolHandler add-ons is chapter 3 of

the Developer's Guide (available at

https://wiki.openoffice.org/w/images/d/d9/DevelopersGuide_OOo3.1.0.pdf), or

online at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/Integrating_

Components_into_OpenOffice.org and

https://wiki.openoffice.org/wiki/Documentation/DevGuide/WritingUNO/AddOns/Ad

d-Ons (or use loGuide "Integrating Components" and loGuide add-ons).

The Developer's Guide add-on example can be found at

http://api.libreoffice.org/examples/DevelopersGuide/examples.html#Components

2. Creating the EzHighlight Add-on

There's an overlap between the steps required to create an UNO component and an

add-on. The main similarity is the need for an OXT file containing a JAR and a

description.xml. However, there's no need for an IDL file or type database (a RDB

file), but there are extra details concerning the GUI and dispatch handling.

The main steps in creating an add-on are illustrated by Figure 7.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

Figure 7. Toolchain for Creating an Add-on.

The UNO component toolchain in the previous chapter used my skelComp.bat script

to generate a partial Java implementation. The script utilizes Office's uno-

skeletonmaker which can also be employed to generate add-ons and Calc addins.

Unfortunately, I was unable to get its add-on features to work.

This was not a great loss since I'd already been thinking about replacing uno-

skeletonmaker with FreeMarker, a powerful template processing library

(http://freemarker.org/). FreeMarker can easily duplicate all the features of uno-

skeletonmaker, creating a Java class with the boilerplate code for creating a service

and handling command URLs. Also, by switching to FreeMarker, I was able to add

more automatic code generation, including code for a user input dialog and a

debugging window.

The OXT file requires three configuration files: a description of the dialog in Figure

4, Addon.xcs which defines the add-on's GUI (e.g. the menu and toolbar items in

Figures 2 and 3), and ProtocolHandler.xcu which says which command URLs are

processed by the add-on's dispatch handler.

The toolchain in Figure 7 will be explained in more detail in the rest of this chapter.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

3. Creating a Partial Add-on Implementation

Figure 8 shows the main elements needed to use the FreeMarker template library: a

FTL template file, and a program that instantiates the template by employing a

collection of FreeMarker variables and their bindings.

Figure 8. Using FreeMarker.

The simplest FreeMarker program replaces all the FreeMarker variables in the

template by their associated bindings, generating a new text file (a Java program in

this case). However, FreeMarker contains additional programming features, including

for-loops and if-statements, which can generate more complex blocks of text.

The add-on template is stored in addonImpl.ftl, and is processed by

CreateAddonImpl.java. It reads in the add-on's name, and initializes a HashMap of

three FreeMarker variables called "className", "extensionID, and "cmdNames".

For example, CreateAddonImpl can be called like so:

> run CreateAddonImpl EzHighlight

The three variables are assigned:

 "className" : "EzHighlightAddonImpl"

 "extensionID : "org.openoffice.ezhighlightAddon"

 "cmdNames" : ["EzHighlight", "help"]

"className" is assigned the name of the generated Java class. "extensionID" contains

the protocol string used by the command URLs. "cmdNames" holds a list of

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

command URL names: "EzHighlight" is linked to the add-on's menu and toolbar

items, and "help" is attached to the add-on's help menu item.

CreateAddonImpl outputs a class called EzHighlightAddonImpl, a fully functional

add-on, which displays a dialog like the one in Figure 4 and the help message in

Figure 6. However, after the user has typed <ENTER> in the dialog or pressed the

"Ok" button, no processing is carried out on the Office document.

First I'll give an overview of the features in the generated EzHighlightAddonImpl

class, then explain the additional highlighting code in a later section.

4. The FreeMarker-generated EzHighlightAddonImpl

The template in addonImpl.ftl represents a single Java class, which extends

WeakBase and implements seven interfaces:

public class ${className} extends WeakBase implements

 XInitialization, XServiceInfo,

 XDispatchProvider, XDispatch, // for the add-on

 XActionListener, XTopWindowListener,

 XKeyListener // for the dialog

{

 // ... add-on code

}

WeakBase is the base class used by all components (which includes add-ons and Calc

Addins). XServiceInfo and XInitialization handle the creation and initialization of the

service at run time.

The XDispatchProvider method, queryDispatch(), implements the dispatch handler

for the add-on – it accepts the command URLs associated with the add-on:

// in EzHighlightAddonInpl.java

public XDispatch queryDispatch(URL commandURL,

 String targetFrameName, int searchFlags)

{

 if (commandURL.Protocol.compareTo(

 "org.openoffice.ezhighlightAddon:") == 0) {

 if (commandURL.Path.compareTo("EzHighlight") == 0) {

 System.out.println("queryDispatch() for \"EzHighlight\"");

 return this;

 }

 if (commandURL.Path.compareTo("help") == 0) {

 System.out.println("queryDispatch() for \"help\"");

 return this;

 }

 }

 return null;

} // end of queryDispatch()

The handler signals its acceptance of a command URL by returning a dispatch object

which Office uses to process the command. EzHighlightAddonImpl also implements

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

the XDispatch interface, so returns a reference to itself. This means that Office calls

EzHighlightAddonImpl.dispatch(), passing it the command URL and other properties:

// in EzHighlightAddonInpl.java

public void dispatch(URL commandURL, PropertyValue[] props)

{

 if (commandURL.Protocol.compareTo(

 "org.openoffice.ezhighlightAddon:") == 0) {

 if (commandURL.Path.compareTo("EzHighlight") == 0)

 processCmd("EzHighlight");

 if (commandURL.Path.compareTo("help") == 0)

 processCmd("help");

 }

} // end of dispatch()

The template-generated code inside dispatch() distinguishes between the possible

command names ("EzHighlight" and "help") by calling processCmd() with different

arguments.

If processCmd()'s input argument is "help", then GUI.showMessageBox() is called to

display the window shown in Figure 6, while "EzHighlight" triggers the dialog in

Figure 4. The processCmd() code is:

// in EzHighlightAddonInpl.java...

// globals

private XDialog dialog = null;

private Console console; // for debugging output

private int printCount = 1;

private void processCmd(String cmd)

{

 XComponent doc = Lo.addonInitialize(xcc);

 // so my utils can be used safely

 System.out.println("Window title: " + GUI.getTitleBar());

 System.out.println(printCount++ +

 ". dispatch() called for \"" + cmd + "\"");

 if (cmd.equals("help")) {

 GUI.showMessageBox("Add-on Help",

 "Type in the text, then press return or

 click the Ok button.");

 return;

 }

 // "EzHighlight" is processed by the following code...

 console.setVisible(true);

 dialog = Dialogs.loadAddonDialog(

 "org.openoffice.ezhighlightAddon",

 "dialogLibrary/" + cmd + ".xdl");

 if (dialog == null) {

 System.out.println("Could not load " + cmd + " dialog");

 return;

 }

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

 XControl dialogControl = Dialogs.getDialogControl(dialog);

 initDialog(dialogControl);

 Dialogs.execute(dialogControl);

 console.setVisible(false);

} // end of processCmd()

Lo.addonInitialize() initializes the globals used by my Lo utility library and other

support classes:

// in the Lo class

// globals

private static XComponentContext xcc = null;

private static XDesktop xDesktop = null;

private static XMultiComponentFactory mcFactory = null;

private static XMultiServiceFactory msFactory = null;

public static XComponent addonInitialize(

 XComponentContext addonXcc)

{ xcc = addonXcc;

 if (xcc == null) {

 System.out.println("Could not access component context");

 return null;

 }

 mcFactory = xcc.getServiceManager();

 if (mcFactory == null) {

 System.out.println("Office Service Manager is unavailable");

 return null;

 }

 try {

 Object oDesktop = mcFactory.createInstanceWithContext(

 "com.sun.star.frame.Desktop", xcc);

 xDesktop = Lo.qi(XDesktop.class, oDesktop);

 }

 catch (Exception e) {

 System.out.println("Could not access desktop");

 return null;

 }

 XComponent doc = xDesktop.getCurrentComponent();

 if (doc == null) {

 System.out.println("Could not access document");

 return null;

 }

 msFactory = Lo.qi(XMultiServiceFactory.class, doc);

 return doc;

} // end of addonInitialize()

addonInitialize() returns an instance of XComponent, which refers to the document

currently loaded into Office. Later this will be used to highlight the document's text.

processCmd() calls Console.setVisible() before and after the processing of the

"EzHighlight" command. The first call makes a Console debugging window visible,

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

and the call at the end hides it. These lines should be commented out of the completed

add-on, so the window doesn't appear.

The dialog is handled by methods from my Dialogs support class, and by listeners set

up in initDialog().

5. Creating the Dialog

There are two approaches for dialog creation: the easy way uses Office's dialog editor,

and the hard way calls functions in my Dialogs support class to programmatically

create the dialog's components. I'll use the editor in this chapter, and employ Dialogs

methods in my macros in Chapter 48.

The Developer's Guide has some information on the dialog editor in chapter 11,

"OpenOffice.org Basic". The relevant sub-sections are online at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Basic/Dialog_Editor and

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Basic/Creating_Dialogs

(or use loGuide "Dialog Editor" and loGuide "Creating Dialogs").

The editor utilizes drag-and-drop to place GUI elements in a dialog drawing area,

with property windows for specializing each element. The editor is reached via

Office's menu item Tools > Macros > Organize Dialogs (see Figure 9).

Figure 9. Creating a new Dialog.

Figure 10 shows the dialog editor window after the creation of a new dialog called

"Basic"; the GUI controls run along the bottom of the window.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

Figure 10. The Dialog Editor Window for a new Dialog.

The simplest useful dialog is probably the version of the "Basic" dialog in Figure 11,

consisting of a label, text field, and "Ok" button.

Figure 11. The "Basic" Dialog.

A dialog can be exported as XML using the "Export Dialog" icon above the drawing

area (the icon includes a floppy disk which will leave young programmers mystified).

The resulting XDL file contains text something like:

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE dlg:window

 PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN"

 "dialog.dtd">

<dlg:window xmlns:dlg="http://openoffice.org/2000/dialog"

 xmlns:script="http://openoffice.org/2000/script"

 dlg:id="Basic"

 dlg:left="52" dlg:top="44" dlg:width="173" dlg:height="34"

 dlg:closeable="true" dlg:moveable="true"

 dlg:title="Basic Dialog">

 <dlg:styles>

 <dlg:style dlg:style-id="0"

 dlg:background-color="0xeeeeee"

 dlg:font-height="10"/>

 </dlg:styles>

 <dlg:bulletinboard>

 <dlg:text dlg:style-id="0" dlg:id="Label1"

 dlg:tab-index="0"

 dlg:left="6" dlg:top="11" dlg:width="38" dlg:height="8"

 dlg:value="Enter input:"/>

 <dlg:textfield dlg:id="TextField1"

 dlg:tab-index="1"

 dlg:left="41" dlg:top="7" dlg:width="83" dlg:height="14"/>

 <dlg:button dlg:id="CommandButton1"

 dlg:tab-index="2"

 dlg:left="137" dlg:top="9" dlg:width="28" dlg:height="12"

 dlg:value="Ok"/>

 </dlg:bulletinboard>

</dlg:window>

The code in EzHighlightAddonInpl assumes that the dialog contains a text field called

"TextField1" and a button called "CommandButton1", which is true of the XDL

shown above. Of course, it's possible to add more GUI components, as in the next

section.

5.1. The EzHighlight Dialog

The dialog editor has an import icon to the left of the export icon, which can be used

to load an XDL file for modification.

I copied the "Basic" XDL file, renaming it to "EzHighlight.xdl", and imported it; a

few changes and additions later, it looked as shown in Figure 12.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

Figure 12. The EzHighlight.xdl Dialog.

The exported XML is:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE dlg:window

 PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN"

 "dialog.dtd">

<dlg:window xmlns:dlg="http://openoffice.org/2000/dialog"

 xmlns:script="http://openoffice.org/2000/script"

 dlg:id="EzHighlight"

 dlg:left="109" dlg:top="73" dlg:width="184" dlg:height="44"

 dlg:closeable="true" dlg:moveable="true"

 dlg:title="EzHighlight Text Selector">

 <dlg:styles>

 <dlg:style dlg:style-id="0"

 dlg:background-color="0xeeeeee"/>

 </dlg:styles>

 <dlg:bulletinboard>

 <dlg:text dlg:style-id="0" dlg:id="Label1"

 dlg:tab-index="0"

 dlg:left="8" dlg:top="11" dlg:width="26" dlg:height="10"

 dlg:value="Enter text:"

 dlg:align="right"/>

 <dlg:textfield dlg:id="TextField1"

 dlg:tab-index="1"

 dlg:left="39" dlg:top="9" dlg:width="83" dlg:height="12"/>

 <dlg:textfield dlg:id="TextField2"

 dlg:tab-index="2"

 dlg:left="39" dlg:top="26" dlg:width="46" dlg:height="12"

 dlg:readonly="true"/>

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

 <dlg:text dlg:style-id="0" dlg:id="Label2"

 dlg:tab-index="3"

 dlg:left="8" dlg:top="27" dlg:width="26" dlg:height="10"

 dlg:value="Count:"

 dlg:align="right"/>

 <dlg:button dlg:id="CommandButton1"

 dlg:tab-index="4"

 dlg:left="131" dlg:top="9" dlg:width="46" dlg:height="12"

 dlg:value="Highlight"/>

 </dlg:bulletinboard>

</dlg:window>

The dialog loading code in EzHighlightAddonInpl.java assumes that the dialog's

filename is the same as the command URL name, as can be seen in processCmd():

// part of processCmd() in EzHighlightAddonInpl.java...

dialog = Dialogs.loadAddonDialog("org.openoffice.ezhighlightAddon",

 "dialogLibrary/" + cmd + ".xdl");

processCmd() also assumes that the XDL file is in a dialogLibrary/ sub-directory. I'll

explain how this is part of the add-on's OXT file in a later section.

Dialogs.loadAddonDialog() is defined as:

// in the Dialogs class

public static XDialog loadAddonDialog(String extensionID,

 String dialogFnm)

{ XDialogProvider dp =

 Lo.createInstanceMCF(XDialogProvider.class,

 "com.sun.star.awt.DialogProvider");

 if (dp == null) {

 System.out.println("Could not access the Dialog Provider");

 return null;

 }

 try {

 return dp.createDialog("vnd.sun.star.extension://" +

 extensionID + "/" + dialogFnm);

 }

 catch (java.lang.Exception e) {

 System.out.println("Could not load the dialog: \"" +

 dialogFnm + "\": " + e);

 return null;

 }

} // end of loadAddonDialog()

The crucial line is the call to XDialogProvider.createDialog(), which constructs the

dialog name:

vnd.sun.star.extension://org.openoffice.ezhighlightAddon/

 dialogLibrary/EzHighlight

The dialog is loaded from the ezhighlightAddon extension.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

5.2. Listening to the Dialog

Back in processCmd(), listeners are attached to the loaded dialog, and the dialog is

made visible on-screen:

// in processCmd() in EzHighlightAddonInpl.java...

XControl dialogControl = Dialogs.getDialogControl(dialog);

initDialog(dialogControl);

Dialogs.execute(dialogControl);

Dialogs.getDialogControl() casts the XDialog into an XControl:

// in the Dialogs class

public static XControl getDialogControl(XDialog dialog)

{ return Lo.qi(XControl.class, dialog); }

The initDialog() method inside EzHighlightAddonInpl.java attaches three listeners to

the dialog: a window listener, an action listener for the "CommandButton1" button,

and a key listener for the "TextField1" text field:

// in the EzHighlightAddonInpl class

// globals

private XTextComponent textBox;

 // the text in the dialog's text field

private void initDialog(XControl dialogControl)

{

 // listen to the dialog window

 XTopWindow topWin = Dialogs.getDialogWindow(dialogControl);

 topWin.addTopWindowListener(this);

 // Dialogs.showControlInfo(dialogControl);

 // set listener for Ok button

 XButton button = Lo.qi(XButton.class,

 Dialogs.findControl(dialogControl, "CommandButton1"));

 button.addActionListener(this);

 // set listener for text box

 textBox = Lo.qi(XTextComponent.class,

 Dialogs.findControl(dialogControl, "TextField1"));

 XWindow xTFWindow = (XWindow) Lo.qi(XWindow.class, textBox);

 xTFWindow.addKeyListener(this);

 xTFWindow.setFocus();

} // end of initDialog()

These controls and listeners are all from Office's com.sun.star.awt module. The dialog

and listeners will be invoked by Office at run time, and so should use its API, not

Java's Swing.

The call to Dialogs.showControlInfo() is commented out in initDialog(), but is a

useful way to double-check the dialog's internal construction, and particularly the IDs

of its components. showControlInfo() prints to standard output which will be

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

displayed in the Console window. Figure 13 reports the structure of the

EzHighlight.xdl dialog from Figure 12.

Figure 13. The Console Window Showing Dialog Details.

The dialog contains five components: two labels, two text fields, and a button.

Dialogs.findControl() uses a control's name to find it inside a dialog:

// in Dialogs class

public static XControl findControl(XControl dialogCtrl,

 String name)

{ XControlContainer ctrlCon =

 Lo.qi(XControlContainer.class, dialogCtrl);

 return ctrlCon.getControl(name);

}

initDialog() converts the returned "CommandButton1" control into an XButton, and

the "TextField1" control into an XTextComponent so that listeners can be attached to

them.

EzHighlightAddonInpl implements all of the listener interfaces used by the dialog:

XActionListener, XTopWindowListener, and XKeyListener.

XActionListener.actionPerformed() deals with button presses,

XTopWindowListener.windowClosing() listens for the closing of the dialog, and

XKeyListener.keyPressed() captures the user typing <ENTER> into the text field:

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

// in the EzHighlightAddonInpl class

// globals

private XDialog dialog = null;

private XTextComponent textBox;

public void actionPerformed(ActionEvent e)

{

 String info = textBox.getText();

 if (info.equals(""))

 return;

 System.out.println("Info: \"" + info +"\"");

 textBox.setText("");

 // ADD code here

} // end of actionPerformed()

public void windowClosing(EventObject event)

{ dialog.endExecute(); }

public void keyPressed(KeyEvent event)

{

 if (event.KeyCode == Key.RETURN) {

 String info = textBox.getText();

 if (info.equals(""))

 return;

 System.out.println("Info: \"" + info +"\"");

 textBox.setText("");

 // ADD code here

 }

} // end of keyPressed()

The template generated code for actionPerformed() and keyPressed() only print

information to the Console window. Add-on specific functionality is added next.

6. Completing the Implementation of EzHighlightAddonInpl

The completion of EzHighlightAddonInpl.java takes the form of new code in

processCmd(), initDialog(), actionPerformed(), and keyPressed(), and a few new

global variables.

processCmd() converts the XComponent document returned by Lo.addonInitialize()

into an XTextDocument, assuming that the currently loaded document is text-based.

If it isn't then there's no point continuing:

// in the EzHighlightAddonInpl class

// globals

private XTextDocument textDoc;

// in processCmd()

 :

XComponent doc = Lo.addonInitialize(xcc);

// added

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 18 © Andrew Davison 2017

textDoc = Write.getTextDoc(doc);

if (textDoc == null)

 return;

 :

initDialog() is extended to access the word count text field. It's only used to report the

number of changes, so doesn't need a listener:

// in the EzHighlightAddonInpl class

// globals

private XTextComponent countTextBox;

// in initDialog()

 :

// get a reference to the count text field; added

countTextBox = Lo.qi(XTextComponent.class,

 Dialogs.findControl(dialogControl, "TextField2"));

 :

actionPerformed() and keyPressed() must trigger the highlighting code, which is

implemented in applyEzHighlighting():

// added to actionPerformed()

 :

int count = applyEzHighlighting(info);

countTextBox.setText(""+count);

// added to keyPressed()

 :

int count = applyEzHighlighting(info);

countTextBox.setText(""+count);

applyEzHighlighting() is passed the text entered by the user through the dialog. It uses

the XReplaceable and XReplaceDescriptor interfaces to perform a search and replace

through the document. This technique, and very similar code, was explained in

Chapter 9. applyEzHighlighting() is:

// in the EzHighlightAddonInpl class

// globals

private XTextDocument textDoc;

private int applyEzHighlighting(String searchKey)

/* Matches whole words and is case sensitive.

 Highlights in bold and red; */

{

 System.out.println("applyEzHighlighting(): " + searchKey);

 XReplaceable repl = Lo.qi(XReplaceable.class, textDoc);

 XReplaceDescriptor desc = repl.createReplaceDescriptor();

 /* Get a XPropertyReplace object for altering the properties

 of the replaced text */

 XPropertyReplace propReplace = Lo.qi(XPropertyReplace.class, desc);

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 19 © Andrew Davison 2017

 // Set the replaced text to bold and red

 PropertyValue wv = new PropertyValue("CharWeight", -1,

 FontWeight.BOLD, PropertyState.DIRECT_VALUE);

 PropertyValue cv = new PropertyValue("CharColor", -1,

 Color.RED.getRGB(), PropertyState.DIRECT_VALUE);

 PropertyValue[] props = new PropertyValue[] {cv, wv};

 try {

 propReplace.setReplaceAttributes(props);

 // Only match whole words and be case sensitive

 desc.setPropertyValue("SearchCaseSensitive", true);

 desc.setPropertyValue("SearchWords", true);

 }

 catch (com.sun.star.uno.Exception ex) {

 System.out.println("Error setting up search properties");

 return -1;

 }

 /* Replaces all instances of searchKey with new Text properties

 and gets the number of changed instances */

 desc.setSearchString(searchKey);

 desc.setReplaceString(searchKey);

 return repl.replaceAll(desc);

} // end of applyEzHighlighting()

7. Configuring the Add-on

An add-on OXT file requires two configuration files not used by an UNO component:

ProtocolHandler.xcu and Addon.xcs.

7.1. ProtocolHandler.xcu

ProtocolHandler.xcu specifies which command URLs will be handled by the

component. The contents of the file for EzHighlight are:

<?xml version='1.0' encoding='UTF-8'?>

<oor:component-data oor:name="ProtocolHandler"

 oor:package="org.openoffice.Office"

 xmlns:oor="http://openoffice.org/2001/registry"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <node oor:name="HandlerSet">

 <node oor:name="EzHighlightAddonImpl" oor:op="replace">

 <prop oor:name="Protocols" oor:type="oor:string-list">

 <value>org.openoffice.ezhighlightAddon:*</value>

 </prop>

 </node>

 </node>

</oor:component-data>

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 20 © Andrew Davison 2017

The "EzHighlightAddonImpl" component will handle all command URLs that begin

with the "org.openoffice.ezhighlightAddon" extension ID. The "all" is specified using

the * wildcard. The component name is the name of the generated Java class.

7.2. Addon.xcs

Addon.xcs defines the add-on's GUI elements, such as its menu and toolbar items (i.e.

as seen in Figures 2, 3, and 5). Figure 14 illustrates how the file may set up to five

attributes:

Figure 14. The Addon.xcs GUI Elements.

The "AddonMenu" attribute defines the look of the menu item that appears at the end

of Office's Tool > Add-ons menu, as in Figure 2.

The "OfficeToolbar" attribute specifies the appearance of the floating toolbar reached

via View > Toolbars > Add-on <number>, as in Figure 3.

The "OfficeMenubar" attribute is used to add a menu item to Office's main menu bar,

which seems a rather poor GUI design choice, so I've chosen not to use it.

The OfficeHelp" attribute creates the add-on's help menu item on Office's Help menu,

as in Figure 5.

The "Images" attribute defines the icons that appear next to the text in the menu and

toolbar items. If you look back at Figures 2 and 3, you'll see that no icons appear, but

this isn't for want of me trying. This feature seems to be broken, but I'll still explain

how to set it up.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 21 © Andrew Davison 2017

Aside from "Images", the attributes have a similar structure: a menu or toolbar item

with five sub-attributes: URL, Title, ImageIdentifier, Context, and Target; I'll not be

using sub-menu attributes.

The best explanation of Addon.xcs' structure is "How to distribute your macros with

an Addon" by Bernard Marcelly at

http://www.openoffice.org/documentation/HOW_TO/various_topics/Addons1_1en.pd

f, which dates from 2003.

The "AddonMenu" Attribute

The "AddonMenu" attribute used by the EzHighlight add-on is:

<node oor:name="AddonMenu">

 <node oor:name="org.openoffice.ezhighlightAddon"

 oor:op="replace">

 <prop oor:name="URL" oor:type="xs:string">

 <value>org.openoffice.ezhighlightAddon:EzHighlight</value>

 </prop>

 <prop oor:name="Title" oor:type="xs:string">

 <value>EzHighlight Text</value>

 </prop>

 <prop oor:name="ImageIdentifier" oor:type="xs:string">

 <value/>

 </prop>

 <prop oor:name="Context" oor:type="xs:string">

 <value>com.sun.star.text.TextDocument</value>

 </prop>

 <prop oor:name="Target" oor:type="xs:string">

 <value>_self</value>

 </prop>

 </node>

</node>

The "URL" attribute holds the command URL which is dispatched by Office when

the menu item is clicked.

The "Title" attribute contains the menu item's text, and "ImageIdentifier" can be

assigned the path to a PNG or BMP file for the text's icon. "ImageIdentifier" is left

empty here since all the images are defined in the "Images" attribute, explained

below.

The "Context" attribute is assigned the document service for the Office application

utilizing the add-on. EzHighlight is accessible only from Writer, so "Context"'s value

is "com.sun.star.text.TextDocument". Other application/service mappings are shown

in Table 1.

Office Application Document Service

Writer com.sun.star.text.TextDocument

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 22 © Andrew Davison 2017

Calc com.sun.star.sheet.SpreadsheetDocument

Impress com.sun.star.presentation.PresentationDocument

Draw com.sun.star.drawing.DrawingDocument

Formula com.sun.star.formula.FormulaProperties

Chart com.sun.star.chart.ChartDocument

Bibliography com.sun.star.frame.Bibliography

Table 1. Office Application/Service Mappings Used by "Context"

If the "Context" field isn't assigned a value, then the add-on will be available in all of

Office's applications.

The "Target" field can be assigned four values: "_top", "_parent", "_blank", and

"_self", but I've never seen any other value used but "_self".

The "OfficeToolbar" Attribute

Figure 2 (EzHighlight's menu item) and Figure 3 (its toolbar item) look the same, and

respond in the same way when clicked, so it's no great surprise that the

"OfficeToolbar" attribute in Addon.xcs is almost exactly the same as "AddonMenu":

<node oor:name="OfficeToolBar">

 <node oor:name="org.openoffice.ezhighlightAddon"

 oor:op="replace">

 <node oor:name="m1" oor:op="replace">

 <prop oor:name="URL" oor:type="xs:string">

 <value>org.openoffice.ezhighlightAddon:EzHighlight</value>

 </prop>

 <prop oor:name="Title" oor:type="xs:string">

 <value>EzHighlight Text</value>

 </prop>

 <prop oor:name="ImageIdentifier" oor:type="xs:string">

 <value/>

 </prop>

 <prop oor:name="Context" oor:type="xs:string">

 <value>com.sun.star.text.TextDocument</value>

 </prop>

 <prop oor:name="Target" oor:type="xs:string">

 <value>_self</value>

 </prop>

 </node>

 </node>

</node>

The difference is an extra <node> attribute which allows a toolbar to hold several

items. In the description above, there's one item labeled as "m1". The labels can be

any unique string, but "m" followed by a number is used in most examples.

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 23 © Andrew Davison 2017

The "OfficeHelp" Attribute

The "OfficeHelp" attribute is similar to "OfficeToolbar" and "AddonMenu", but

dispatches a different command URL ("org.openoffice.ezhighlightAddon:help") and

its menu item uses a different title ("About EzHighlight").

<node oor:name="OfficeHelp">

 <node oor:name="org.openoffice.ezhighlightAddon"

 oor:op="replace">

 <prop oor:name="URL" oor:type="xs:string">

 <value>org.openoffice.ezhighlightAddon:help</value>

 </prop>

 <prop oor:name="Title" oor:type="xs:string">

 <value xml:lang="en-US">About EzHighlight</value>

 </prop>

 <prop oor:name="ImageIdentifier" oor:type="xs:string">

 <value/>

 </prop>

 <prop oor:name="Context" oor:type="xs:string">

 <value>com.sun.star.text.TextDocument</value>

 </prop>

 <prop oor:name="Target" oor:type="xs:string">

 <value>_self</value>

 </prop>

 </node>

</node>

The "Images" Attribute

The "Images" attribute specifies the icons used by the GUI elements. An image can be

either big or small (26x26 or 16x16 pixels), high contrast or normal, and loaded from

a file or coded as hexadecimal text. These different combinations mean there are eight

variants to choose from, each with a different property name, which are listed in Table

2.

Size in

Pixels
Contrast

Property Name

Hexadecimal text File name

16x16 normal ImageSmall ImageSmallURL

16x16 high ImageSmallHC ImageSmallHCURL

26x26 normal ImageBig ImageBigURL

26x26 high ImageBigHC ImageBigHCURL

Table 2. Image Property Names.

The "Images" attribute for EzHighlight is:

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 24 © Andrew Davison 2017

<node oor:name="Images">

 <node oor:name="org.openoffice.ezhighlightAddon"

 oor:op="replace">

 <prop oor:name="URL" oor:type="xs:string">

 <value>org.openoffice.ezhighlightAddon:EzHighlight</value>

 </prop>

 <node oor:name="UserDefinedImages">

 <prop oor:name="ImageSmallURL">

 <value>%origin%/images/ezhighlight16.png</value>

 </prop>

 <prop oor:name="ImageBigURL">

 <value>%origin%/images/ezhighlight26.png</value>

 </prop>

 </node>

 </node>

</node>

The "UserDefinedImages" sub-attribute specifies two sizes of normal contrast image,

supplied as filenames. %origin% stands for the OXT file, so the two icons are stored

in the images/ subdirectory inside that zipped file.

The images will be used for the menu and toolbar items associated with the

"org.openoffice.ezhighlightAddon:EzHighlight" command URL. Unfortunately, the

images don't appear, as shown in Figures 2 and 3.

The hexadecimal text definition of a small image would be something like:

 <prop oor:name="ImageSmall">

 <value>89504E470D0A1A0A0000000D494844520000001000000

 01008060000001FF3FF610000024F494 ... // more numbers

 </value>

 </prop>

One way to obtain an image's hexadecimal text is to call my ImageHex.java program

which prints it to stdout. Unfortunately, the icon still doesn't appear, even when

specified in this form.

8. Building and Installing the OXT File

Figure 7 shows the stages in building and installing the add-on as an extension. These

steps are carried out by my installAddon.bat script, which assumes that the various

configuration files have already been created and are in certain locations.

The completed EzHighlightAddonImpl.java file is compiled, then added to

EzHighlight.jar with a manifest that refers to Utils.jar:

RegistrationClassName: EzHighlightAddonImpl

Class-Path: Utils.jar

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 25 © Andrew Davison 2017

Utils.jar contains my support classes, which may be required by the add-on at run-

time. installAddon.bat will add it to the OXT file along with EzHighlight.jar.

installAddon.bat assumes that the add-on configuration files are in a sub-directory

with the same name as the add-on. For example, when it's processing the EzHighlight

add-on, it looks for a EzHighlight/ folder with the following structure:

EzHighlight

 | Addons.xcu

 | description.xml

 | license.txt

 | package-description.txt

 | ProtocolHandler.xcu

 | Utils.jar

 |

 +---dialogLibrary

 | EzHighlight.xdl

 |

 +---images

 | ezhighlight.png

 | ezhighlight16.png

 | ezhighlight26.png

 |

 \---META-INF

 manifest.xml

EzHighlight.jar is moved into EzHighlight/, and the folder is zipped into

EzHighlight.oxt. The extension is installed into Office using the unopkg tool, in the

same way as the UNO component of the last chapter.

EzHighlight/ contains three configuration files: ProtocolHandler.xcu, Addons.xcu,

and description.xml. description.xml plays the same role as the same-named file for

UNO components. Its contents use the same XML attributes:

<?xml version="1.0" encoding="UTF-8"?>

<description

xmlns="http://openoffice.org/extensions/description/2006"

xmlns:d="http://openoffice.org/extensions/description/2006"

xmlns:xlink="http://www.w3.org/1999/xlink">

 <identifier value="org.openoffice.ezhighlightAddon"/>

 <version value="0.1"/>

 <display-name>

 <name lang="en">EzHighlight Addon</name>

 </display-name>

 <publisher>

 <name xlink:href="http://fivedots.coe.psu.ac.th/~ad/jlop/"

 lang="en">Andrew Davison</name>

 </publisher>

 <registration>

 <simple-license accept-by="user" >

 <license-text xlink:href="license.txt" lang="en"/>

 </simple-license>

 </registration>

Java LibreOffice Programming. Chapter 46. Add-ons Draft #2 (20th March 2017)

 26 © Andrew Davison 2017

 <extension-description>

 <src lang="en-US" xlink:href="package-description.txt"/>

 </extension-description>

 <icon>

 <default xlink:href="images/ezhighlight.png" />

 </icon>

 <update-information>

 <src xlink:href="http://fivedots.coe.psu.ac.th/~ad/jlop/"/>

 </update-information>

 <dependencies>

 <OpenOffice.org-minimal-version value="3.4"

 d:name="OpenOffice.org 3.4"/>

 </dependencies>

 <platform value="all" />

</description>

The biggest difference is that the extension icon is located in the images/ subdirectory

inside EzHighlight/. license.txt and package-description.txt are referenced in the

description, which explains why those files are in EzHighlight/.

The dialog description (EzHighlight.xdl) is stored in its own subdirectory,

dialogLibrary/, to match the dialog loading code in EzHighlightAddonInpl.java:

// in processCmd()

dialog = Dialogs.loadAddonDialog("org.openoffice.ezhighlightAddon",

 "dialogLibrary/" + cmd + ".xdl");

The images/ subdirectory contains the extension manager icon (ezhighlight.png) and

two sizes of GUI icons (ezhighlight16.png and ezhighlight26.png). The GUI icons

must be inside images/ to match the locations specified in the "Images" attribute in

Addon.xcs.

